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Abstract
A comparison of land-cover maps, emphasizing row crop
agriculture, resulting from independent classifications of
coincident Landsat-5 Thematic Mapper (TM) and Resourcesat-1
Advanced Wide Field Sensor (AWIFS) imagery is presented.
Three agriculturally intensive study areas within the midsec-
tion of the United States were analyzed during the peak of
their growing season. For each region the data were collected
within the same hour during August 2005. Identical decision
tree style classification methodologies relying on ground truth
from the June Agricultural Survey were applied to the image
pairs for each of the three cases. The direct comparison of
mapping accuracy results show, on average, the TM output to
perform slightly better than that of the complimentary AWIFS. 
It is concluded AWIFS is a valid alternative to TM for classifying
cultivated agriculture in areas with reasonably large field sizes.
Furthermore, AWIFS offers increased benefits due to larger
swath widths and shorter revisit frequencies.

Introduction
The mission of the National Agricultural Statistics Service
(NASS) is to providing timely, accurate, and useful statistics in
service to United States agriculture. To meet the goal, NASS
implements hundreds of annual surveys, plus a comprehen-
sive census every five years, which continually compile and
tabulate information on domestic crops and livestock. Demo-
graphic, environmental, and economic data related to agricul-
ture is also gathered. The information is collected by a variety
of methods including mail, phone, Internet, or personal
interview.

The flagship survey effort within NASS is the June
Agricultural Survey (JAS). Annually, enumerators visit
over 11,000 sample sites, encompassing roughly 85,000 land
tracks, distributed across the U.S. Data is collected on planted
crop acreage, livestock inventories, and farm economics. 
Each site is usually one square mile in size and location
determined from a stratified random sample selected from 
a probability-based area frame. The samples are primarily
drawn from agriculturally intensive regions and amount to a
ground sampling rate of one half percent or denser in those
areas. The data from all of the visited sites is ultimately
aggregated to state and national levels and used to make
agricultural planted acreage estimates for the current year.

The need often arises for the June collected statistical
information to be compiled at a geographically finer level
than what the JAS can provide. Remotely sensed imagery used
in conjunction with concurrent JAS land-use data presents a
means for identifying the spatial distribution of crops down
to the level of individual fields. This is employed through
a “supervised” image classification methodology and is
made robust because of the geographically and randomly
distributed nature of the JAS. Thus, for several years NASS
has leveraged the JAS ground truth information and prod-
uced categorized land-cover image products, known as Crop-
land Data Layers (CDL) (Craig, 2001; Mueller, 2000). Focus
for the CDL program has been on select central and southern
U.S. states dominated by intensive agriculture and has grown
in scope since inception during the late-1990s.

The CDL products have a variety of applications, espe-
cially when integrated into a geographic information system
(GIS). Primary benefits within NASS include the ability to
tighten confidence intervals for the state level acreage 
estimates derived from the JAS, derivation of county level
acreage estimates, and feedback for the defining and updat-
ing of the land-use strata for which the JAS is based. Beyond
NASS, examples of known uses include assessing regional
scale environmental impacts from farming, detection of
land-use changes in agricultural fringe areas, validation of
crop classifications derived from coarser-scaled imagery, and
time series analysis of cropping patterns. Additionally, since
the CDLs are tailored to cropland mapping, the information
from it can also be used to supplement other land-cover
mapping efforts which in themselves may lack sufficient
detail in agricultural classes.

Landsat-5 and -7 have been the primary source of the
remotely sensed data for the CDL program (Craig, 2002).
Reasons for utilizing Landsat data include its appropriate
pixel size and spectral bands for mapping agricultural cover
types, sufficient revisit rate usually allowing for one or more
cloud-free image acquisitions during ideal times of the grow-
ing season, cost effectiveness, and operational nature. Fur-
thermore, land-cover mapping applications with Landsat are
common given a large user community (USDOI, 2006). There
is a particularly large following specifically for monitoring
agriculture and natural resources. Within the U.S. Depart-
ment of Agriculture (USDA) Landsat imagery is analyzed 
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by the Foreign Agricultural Service, Natural Resources
Conservation Service, Forest Service, Farm Service Agency,
and Risk Management Agency, in addition to NASS.

However, with the uncertainly of the Landsat program
due to limited remaining lifespan expectancy with the
greater than 20-year age of the Landsat-5 TM platform,
degradation of the Enhanced Thematic Mapper Plus (ETM�)
sensor because of the Scan Line Corrector (SLC) failure in
2003 aboard Landsat-7, and doubts about the likeliness and
timeliness of follow on missions, NASS began exploring
other data sources. The most appropriate and Landsat-like
imagery to be found was that from the Indian Remote
Sensing’s (IRS) Resourcesat-1 AWIFS. Appealing characteris-
tics included a large swath width, inclusion of spectral
bands important to crop identification and monitoring, and
cost effectiveness per unit area. Additionally, the geographi-
cally wide images had the added benefit of creating large
overlap areas between adjacent scenes which in effect
shortened revisit times.

In 2004, NASS tasked the Resourcesat AWIFS sensor to
collect data over much of the upper and lower Mississippi
River basin during the month of August. About 150 scenes
were obtained with a general objective to assess the quality
and timeliness of the data. A more targeted goal was to
evaluate the suitability of the data to build a CDL and test
the acreage estimate accuracy. Quantitative assessment of
the 2004 data’s utility within the CDL program was limited,
but AWIFS was thought to be promising as a compromise
because derived classifications and acreage estimates for
major crops were comparable (Boryan and Craig, 2005).
Minimally, AWIFS satisfied the goal of providing supplemen-
tal information in regions where a high-quality Landsat
scene was not available due to cloud cover.

The next year NASS committed further to collecting
AWIFS imagery to better explore and document its utility.
Again, data was collected for the central and southern
portions of the U.S. Data collection times coincided with
late spring and middle summer of 2005. More detailed
comparative assessments were undertaken and further
boosted the notion that Resourcesat-1 could be a suitable
alternative to Landsat for crop type mapping. Still lacking
however was a direct quantitative comparison of coinci-
dent, in date and location, imagery which would in effect
control for differences in classifications that could other-
wise arise from changes in atmospheric and ground
conditions.

Even outside of NASS, very little known research has
been published to assess the utility of AWIFS data, whether
for agricultural applications or disciplines beyond. Reasons
may be varied, but likely a result of the newness, limited
availability, unfamiliarity, degraded imagery specification
compared to Landsat TM and ETM�, or competition from
other sensors such as SPOT or ASTER. Of note however, are
publications from Kiran-Chand et al. (2006) who utilized
AWIFS imagery in conjunction with MODIS to validate a
Defense Metrological Satellite Program fire detection
product over India, and from Kulkarni et al. (2006) who
applied AWIFS data for snow cover monitoring in the
Himalayas.

Thus, the goal of this study is straightforward: to
quantitatively assess the utility of AWIFS imagery for land-
cover mapping, specifically targeting crop type identification,
and determine whether AWIFS is a valid replacement data
source for Landsat. TM data will be used as a benchmark
from which to compare AWIFS, because TM has been used
nearly exclusively for the NASS CDL program since the SLC
problem arose on the ETM� sensor. Furthermore, TM is
currently considered the de facto data source in much of the
land-cover monitoring community.

Background
The Resourcesat-1 (IRS-P6) satellite imaging system is a
relative newcomer as a source for spaceborne remotely
sensed imagery. The platform was launched in 2003 and
follows a long lineage of IRS land imaging satellites dating
back to 1988. Resourcesat-1 represents increased capabili-
ties over previous generation IRS satellites and carries three
imaging instruments with complimentary characteristics
(NRSA, 2003; Lutes, 2005). The sensor with the broadest
areal coverage is AWIFS. It has a nadir ground sample
distance (GSD) of 56 m and a swath width of 740 km. The
wide field-of-view imaging is accomplished by two sepa-
rate but identical AWIFS multispectral cameras which are
oppositely titled approximately 12 degrees with respect to
nadir with scenes that overlap by 8.4 km. They each
contain a linear charge coupled device (CCD) array utilizing
6,000 pixels capturing data in four spectral bands (green,
red, near-infrared, and shortwave-infrared).

The other two Resourcesat-1 sensors are the high resolu-
tion Linear Imaging Self-Scanner (LISS-IV) which has a GSD of
5.8 m and the medium resolution Linear Imaging Self Scanner
(LISS-III) with a GSD of 23.5 m. LISS-III’s CCDs are identical to
those of AWIFS and collect data in parallel. This setup affords
the ability to create a higher resolution reference set of data
within the middle of the AWIFS strip. LISS-IV is more special-
ized and can collect imagery 4,000 pixels wide in multispec-
tral mode (green, red, and near-infrared) or 12,000 pixels wide
in mono mode (normally the red band). NASS has not studied
the utility of LISS-III or LISS-IV specifically for regional scale
mapping of agriculture partially due to their limited swath
widths, 141.0 and 23.9 km, respectively, and in the case of
LISS-III, temporal repeat coverage of only 24 days. LISS-IV,
however, can be pointed up to 26 degrees from nadir to
improve revisit times to only five days over limited areas.

Specifics about Landsat-5 TM and Resourcesat-1 AWIFS are
highlighted in Table 1. Notable similarities of the sensors are
the overlap of green, red, near-infrared (NIR), and shortwave-
infrared (SWIR) spectral bands. Not only are the spectral ranges
for each nearly identical, but the AWIFS designers went as far
as labeling the bands to correspond to those of TM. Overpass
times are also similar, with Resourcesat-1 lagging Landsat-5 by

TABLE 1. SENSOR SPECIFICATIONS

Landsat-5 TM Resourcesat-1 AWIFS

Launch 01 March 1984 17 October 2003
Altitude 705 km 817 km
Orbit circular, circular, 

sun-synchronous sun-synchronous
Inclination 98.2° 98.7°
Period 99 minutes 101 minutes
Equatorial 9:45 AM � 10:30 AM � 

crossing 15 minutes 5 minutes
Revisit rate 16 days 24 days
Pixel size 30 m (reflective) 56 m

120 m (thermal) ––
Quantization: 8-bit 10-bit
Spectral bands 1: Blue (0.45–0.52�m) ––

2: Green (0.52–0.60�m) 2: Green 
(0.52–0.59 �m)

3: Red (0.63–0.69�m) 3: Red (0.62–0.68 �m)
4: NIR (0.76–0.90�m) 4: NIR (0.77–0.86 �m)
5: SWIR (1.55–1.75�m) 5: SWlR 
6: Thermal ––

(10.40–12.50�m) (1.55–1.70 �m)
7: MIR (2.08–2.35�m) ––

Field of view 14.7° 42.1°
Swath width 185 km 737 km
Scene size 184 � 185.2 km 370 � 370 km
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about 45 minutes. A key dissimilarity between the sensors is
the exclusion of the blue, mid-infrared (MIR), and thermal-
infrared channels on AWIFS. Also, an important difference is
the sampled ground size of the pixels. AWIFS’s pixels are 
56 m squared versus 30 for TM. As a result, AWIFS pixels are
approximately 3.5 times larger in area than TM pixels. The
swath width of AWIFS is about four times wider than TM, but
because of the bigger pixel sizes, the overall numbers of pixels
per scene are comparable. AWIFS has a large field of view so
the native area of the pixels increases to approximately 70 m
resolution at off-nadir scene edges. At these edges the result-
ing view angle is over 20 degrees from nadir. TM’s maximum
off-nadir viewing angle is only about seven degrees so native
pixel size increase on the scene edges is minimal. From the
specifications in the table alone, one might conclude AWIFS
has less ability to acquire repeat scenes over the same location
since it takes 24 days versus 16 to duplicate its orbital path.
However, because AWIFS has very wide footprints, the side
overlays create repeat frequencies for a given area every five
days. Additionally, 80 percent of a path is overlapped by a
successive orbit, and as a result, it is common to get even
greater repeat coverage for smaller geographic areas. In some
cases, overlap occurs the very next day.

Study Area
In order to directly assess cropland map classification
outcomes of TM versus AWIFS data, coincident scenes, in both
time and location, were deemed most desirable. Images
collected at the same time control for differences that often
arise from changed atmospheric (e.g., haze, humidity) or
ground conditions (e.g., plant phenology, soil moisture)
which could alter otherwise similar classification efforts. 
By chance, coincident data collects occurred several times
during the summer of 2005 within the midsection of the U.S.
Three scene intersections were chosen as best and further
utilized for evaluating cropland detection between sensors.
Factors in selecting the test imagery were based on their
location residing in an agriculturally dominant setting,
proper timing for crop phenology, minimal amounts of
clouds and haze, and sufficient overlap area between scenes.
Additionally, given the large variation of view angle and 
GSD across track with AWIFS and two overlapping imaging
sensors, it was also seen desirable to include different
combinations of view angle and test both AWIFS cameras
when possible.

The first example presented was based on imagery
collected 20 August 2005. Geographically, the data resided
over a section of the agriculturally intensive Mississippi River
Alluvial Plain, locally known as the Delta, centered over the
eastern portion of the state of Arkansas (Figure 1). A small
portion of the study site extended south into Louisiana, and
to a lesser extent, north into Missouri. The majority of the
data was in Arkansas though and thus how referred to here
for discussion. The Arkansas imagery originally spanned 
west of the Delta region, but that portion was excluded 
from analysis because the region is almost exclusively non-
cropland in nature, and thus little ground truth data was
collected. Based on the 2005 JAS statistics, about two-thirds 
of the land in this Arkansas study area was dedicated to field
crop agriculture dominated by soybeans, rice, and cotton
(Table 2). Corn was also found, but in lesser amounts. During
mid-August, the time for which the data were collected,
soybeans and cotton were in the middle of their growing
season while rice and corn were nearing harvest (USDA,
1997). Scene quality was very good with only a few cumu-
lous clouds present along the south and western edges of the
study area. Because the images were collected within an hour
of one another, the clouds had only shifted slightly between
scenes. The Resourcesat-1 data were along the mid-scene of

the west-sided AWIFS camera, and thus represented pixel
reflectances oriented away from the sun at an angle averaging
roughly ten degrees from nadir (Table 3). Oppositely, the
corresponding Landsat-5 TM data angled slightly into the sun,
albeit only about five degrees on average, because of its
location along the eastern edge of its scene.

The second study area was found in south-central Iowa.
It was the smallest geographically of the three examples.
The overlap area originally extended south into Missouri 
but was excluded because of little training data and cloud
issues in that region. The data for Iowa were captured on 
18 August 2005, two days prior to the Arkansas example. 
In terms of agriculture, this region was predominately made
up of corn and soybean row cropping, particularly toward
the northern extent. These crops were in the midst of their
growing season during mid-August. There was also a sizable
amount of land, particularly toward the south, dedicated to
forage like alfalfa, hay, and pasture. Non-agriculture cover
types were a mix of urban and woodland. The city of Des
Moines was nearly centered vertically within the resulting
strip of coincident data. A few cumulous clouds appeared 
in the scenes concentrated along the northern extent, but
otherwise the data was of high quality. The AWIFS imagery
was from Resourcesat-1’s eastward facing camera and
represented the greatest off-nadir viewing angle possible,
trending toward the sun by about 20 degrees. The result was
a native ground sample distance of approximately 70 m. In
contrast, the reflectances from the TM data were oriented
away from the sun, given the area of interest fell onto its
western scene edge. Also, the TM viewing angle was much
less extreme because of its narrower field of view. The Iowa
example presented a scenario with the most opposed
viewing geometry possible between the AWIFS and TM data.

The final case of coincident data was from northeastern
Illinois and collected on 29 August 2005. In terms of geo-
graphic area, the Illinois site was about twice as large as the
Arkansas study case and four times that of Iowa. Corn and
soybeans were the majority crop cover type, as was in Iowa.
A portion of the Chicago metropolitan area was found in the
northeastern section and accounted for about ten percent of
the land-cover over the examined region. The late-August
date was still well within the heart of the growing season
and appropriate for cropland mapping. Cumulous clouds
were present toward the northern edge of the area along with
a thick cirrus band in the extreme southeast. The AWIFS
imagery was from the eastern Resourcesat-1 camera centered
along the scene’s midsection and thus presented an example
of moderate view angle toward the sun. The TM swath was
used almost in entirety, so the average pixel view angle was
near zero with an equal number of pixels oriented toward
the sun as away.

Methodology
A classification tree analysis (CTA) methodology (Friedl and
Brodley, 1997, Lawrence and Wright, 2001) was used to
perform identical but independent classifications on the
three coincident image pairs. Leica Geosystems ERDAS Imag-
ine® 9.0 was used for imagery preparation, NASS PEDITOR
software for digitization and attribution of the NASS JAS
enumerated field boundaries, ESRI ArcGIS® 9.1 for further
analysis and management of those polygons, and See®5.0
2.0 for derivation of the decision tree classification rules
(Quinlan, 1993). The Imagine® “NLCD Mapping Tool” exten-
sion provided by the U.S. Geological Survey (USGS) (Homer
et al., 2004) was used to more easily interface See®5.0 with
Imagine’s tools.

The first step consisted of compiling for each of the
study areas the intersecting 2005 JAS data. In raw form, the

06-137.qxd  10/11/08  4:15 AM  Page 1415



1416 Novembe r  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 2. DOMINANT COVER TYPES AND ESTIMATED AREA DERIVED FROM 2005 NASS JAS

Arkansas Iowa Illinois

Cover Type Area % Cover type Area % Cover type Area %

Corn 3 Alfalfa 7 Alfalfa 2
Cotton 10 Corn 28 Corn 45
Rice 24 Soybeans 20 Soybeans 32
Soybeans 32 Idle cropland 9 Other cropland 2
Idle cropland 3 Pasture/Hay 16 Idle cropland 1
Pasture/Hay 7 Non-agricultural 20 Pasture/Hay 3
Woodland 14 100 Woodland 4
Developed 4 Developed 11
Water 3 100

100

Figure 1. Study area locations.
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annual JAS instrument consists of 24-inch by 24-inch paper-
based maps with an accompanying questionnaire containing
attribute information. The map component contains the
boundary of a one square mile area sample unit known
internally to NASS as a “segment.” Recent aerial photography
is depicted in the background for reference and scaled at
1:8 000. The questionnaire contains, among other things, a
list of possible land-cover types and a place to record
estimated acreage for each. Explaining the breadth of the
JAS further, each segment is randomly selected from a NASS-
defined area frame of contiguous segments spanning the
entire U.S. To improve the efficiency of the sampling,
the segments are stratified into a few categories based on
the percentage of the land-cover dedicated to agriculture.
Thus, minimally intensive agricultural regions are sam-
pled less frequently than those from highly intensive areas.
For example, in 2005 the state of Iowa, which has a very
high percentage of land dedicated to agriculture, had 452
area segments chosen for the JAS. Arid Nevada on the other
hand, had only 26 segments, even though the total land area
is twice the size. In terms of the total amount of land area
sampled, the Iowa study subset area had approximately
three-fourths of one percent JAS coverage. The Illinois study
area had a similar sampling frequency. More intense though
was the Arkansas Delta region which had nearly two percent
of the land area sampled.

During the first two weeks of June, trained enumera-
tors visit each segment and delineate by colored pencil
onto the survey map the current land-cover boundaries.
Alongside, the questionnaire is completed describing what
cover type was found within each of the defined homoge-
neous areas. The information is determined visually 
and by interviewing someone responsible with the land
management at that location. The NASS survey process
places more emphasis and detail on discriminating agricul-
tural cover types, particularly cropland, versus those 
of non-agriculture classes. Thus, while differentiation
between crop types is always expected within the data, no
effort is made to place non-agricultural classes into more
than just simple categories such as “urban,” “woodland,”
and “water.” Furthermore; in some cases an enumerator
may simply lumped anything not agriculture into a single
class, “non-agricultural.”

The land track boundary information is not archived
digitally, since NASS only needs the tabular information to
produce its state and nation-wide estimates of planted acreage
for the U.S. crop commodities. So next, the 2005 JAS field
boundaries from the paper maps were “heads-up” digitized
into a GIS for use as ground truth polygons. Same season map
projected Landsat TM images were used for spatial referencing
of the field boundaries within the GIS. Topology was checked
to assure no gaps or overlaps existed between adjacent land-
cover units within a segment. Linked to each polygon was the
attribute information about cover type and estimated acreage
recorded from the corresponding JAS questionnaire. The
reported acreage value was compared against the drawn
acreage to improve confidence the field were properly delin-

eated. If a large discrepancy was found, then the polygon
was flagged as bad and ignored for later use. In total, the
Arkansas study region contained 199 segments, Iowa 38,
and Illinois 163. Respectively, they contained 1,793, 563,
and 3,648 homogenous cover type polygons.

Next, the land tract level polygons were refined. Each -
digitized field was manually inspected to see if it intersected
a cloud top or shadow in either the coincident TM or AWIFS
imagery, and if so, discarded from any further analysis. Also
eliminated from the ground truth polygons were double-
cropped fields (those with more than one planting per year)
since only single date summer imagery was being used in
the comparison. Furthermore, only majority cover type cate-
gories were utilized since often there were not enough sam-
ples from minority ones to be reasonably depicted across the
scene. This involved combining smaller classes into more
generalized ones and occurred more commonly for non-crop-
land categories. For example, in Iowa, all non-agriculture
classes were collapsed together because there were deemed
too few samples of urban, woodland, and water to be repre-
sentative alone.

With the complete GIS of the JAS in place, the polygons
for each of the three study cases were randomly sampled
by record and divided into two sets of equal length. One
set of the JAS polygons were tasked for training the image
classifier and the other placed aside for validation of the
output later. The training-set half of the polygons were
further refined. To create spectrally pure ground truth
training signatures, the polygons were buffered inward by a
distance of 50 m. The distance was chosen as compromise
between being sufficiently large enough to rid spectrally
mixed edge pixels in either the 30 m TM and 56 m AWIFS
data, yet not so large as to completely eliminate training
polygons from fields that were small to begin with. Finally,
the buffered training polygons were rasterized to a 15 m
grid, assuring increased spatial precision beyond either
imagery dataset, from which to draw training samples used
for the CTA.

The Arkansas study area analysis was performed in
the USGS-defined Continental U.S. Albers Equal Area projec-
tion. The Iowa dataset was analyzed in Universal Trans-
verse Mercator, Zone 15 north, and the Illinois dataset
in Zone 16. All reprojections were done using a cubic con-
volution resampling with the output grid preserved to the
original pixel size of 30 m for TM and 56 m for AWIFS.
The JAS vector information was map projected to the same
extents as the corresponding satellite imagery before being
converted to raster form.

Classification of the raw imagery was performed first
using the JAS data in conjunction with the TM and then
with the AWIFS data for each case. All bands of data were
used as input other than TM’s thermal (band 6) due to its
coarse spatial resolution of only 120 m. The TM imagery
was analyzed in its native 8-bit color depth. AWIFS was also
analyzed in 8-bit, but after having been linearly rescaled
from the native 10-bit. Random point samples, at a rate
of 10 percent of the total, were drawn from within the train-
ing pixels and used to derive the decision trees. See®5.0’s
boosting (Quinlan, 1996) option was set to 10 trials and
global pruning at 25 percent. Analysis was performed on
a per pixel basis and thus no neighboring contextual infor-
mation added.

Finally, output from each classification was assessed
against the fifty percent of JAS data that was withheld for
validation. The validation polygon data was not buffered,
unlike with the training data, but were again rasterized to
15 m preserving a reasonable amount of edge detail. For
each of the cases the classified image was then intersected
with the validation data to produce an error matrix defining
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TABLE 3. SCENE GEOMETRIES

Arkansas Iowa Illinois

Scene area (ha) 2,578,086 1,240,869 5,597,249
Average view angle
TM �5° �7° 0°
AWIFS �10° �20° �10°

AWIFS camera west east east
Average AWIFS GSD (m) 60 70 60
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the same specifications as AWIFS. Thus, three more classi-
fications were performed on each study area. First, the TM
data were analyzed without bands 1 and 7, but keeping
with the original spatial resolution of 30 m. Next, all six
TM bands were used in the analysis, but after degrading
them to the 56 m resolution using cubic convolution
resampling. And finally, the TM data was both stripped of
bands 1 and 7 and resampled to 56 m, thus matching the
characteristics of AWIFS. Each of the new data sources was
reclassified with the same methodology as before and
accuracies computed.

Results for each test are presented in Table 6. The
original TM and AWIFS classification numbers are shown
again for direct reference. The accuracies and Kappas
were reduced at all three study sites with the degradation
of the TM data, and in some cases the differences were
more pronounced than for others. In Iowa for starters,
very little change occurred. The withholding of the blue
and MIR bands only created a 0.2 point difference drop in
accuracy percentage and 0.003 in Kappa. Spatial degrada-
tion to the 56 m resampling effort impacted the results
more with a drop of 0.9 in accuracy and 0.012 in Kappa.
The impact of the combined band removal and pixel
resampling was 56.6 percent, or five percentage points
below the raw numbers for the AWIFS classification. If 
all else were equal, it may have been expected for the
accuracies of the degraded TM data to improve and match
that of the true AWIFS for Iowa. However, that was not the
case and thus further variables must have been affecting
the differences. For Arkansas the drops in accuracy were
increased over that of Iowa but still relatively minor. 
Both the band stripping and pixel degradation methodolo-
gies resulted in similar accuracy reductions. The 4-band
scenario was down 1.9 percentage points from the 
original and the degraded pixel test lowered by a similar
1.7. Kappas trended down nearly equally as well. With
the effects combined, the overall accuracy was 66.0
percent, down 3.4 points from the original TM. All of the
degradation schemes for Arkansas yielded assessment
values a bit lower than that produced from the raw AWIFS
data outright. Finally, for the Illinois example there was 
a decrease in accuracy of only 0.6 for the 4-band scenario
but almost three times greater with 1.7 for the 56 m
simulation. The Kappa difference varied in the same
manner and thus was more pronounced in change for 
the 56 m run. The combined impact to the two effects
resulted in an accuracy drop of 2.2 percentage points.
Unlike for the other study sites though, the compromised
TM data for Illinois yielded impacts that were not damag-
ing enough to reduce it below the output created from 
the raw AWIFS data. Taking a general average of all three
cases, it appears that the change in spatial resolution has
more impact on the classifier accuracy than the combined
exclusion of the two spectral bands.

To boost the notion that the blue (band 1) and MIR
(band 7) reflectance channels from TM were of little
significance to the classification output, the relative
importance of those spectral bands can be inferred by
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TABLE 4. OVERALL CLASSIFICATION ASSESSMENTS

Arkansas Iowa Illinois

Pixel based TM AWIFS TM AWIFS TM AWIFS

Accuracy (%) 69.4 68.4 59.1 61.6 75.8 70.8
Kappa 0.590 0.576 0.491 0.520 0.612 0.530

how the predicted classification faired against the ground
truth (Congalton and Green, 1999).

Results
Overall map accuracy and Kappa statistics are presented in
Table 4. Comparative statistics were similar for each study
area. For Iowa, the classification scenario resulted more
favorably to the AWiFS analysis. Overall accuracies were
59.1 percent for TM and 61.6 percent for AWIFS, a difference
of 2.5. Also, similarly trending were the Kappas with TM
yielding 0.491 and AWIFS 0.520, a difference of 0.029.
Within the Arkansas focus region, the overall accuracies and
Kappas were greater than for Iowa. Results from Landsat’s
sensor showed a modest edge over Resourcesat’s with a
1.0 accuracy difference (69.4 percent versus 68.4 percent,
respectively) and a Kappa difference of 0.014 (0.590 versus
0.576). Finally, the best results overall came from the Illi-
nois subset utilizing TM which showed an even larger map-
ping performance gap over AWIFS. TM was a whole five
percentage points better than AWIFS in map accuracy 
(75.8 percent versus 70.8 percent) and 0.082 for the Kappa
statistic (0.612 versus 0.530). Of note, across the study areas
the TM Kappa was better in Illinois than for Arkansas, but
the reverse was found for AWIFS. Taking a general average of
accuracy and Kappa differences between the three study
cases implies classifications from TM outperformed AWIFS,
albeit modestly. All differences were found to be statistically
significant at the pixel level.

Table 5 breaks out the accuracies by major cover types
to provide a more detailed look at how the classifications
performed. Within Table 5a, the values represent the
producer’s accuracies, or how well the general classifica-
tion predicted within the validation areas. Expressed
inversely, subtracting the producer’s accuracy from 1.0
gives the omission error. Equally important, Table 5b
shows the user’s accuracies. The inverse of the user’s
accuracy is the commission error. For most classes across
sensors the producer’s and user’s accuracies were similar
and within class trends tended to mimic those of the
overall statistics. In general, the dominant classes related
to the major crop types performed the best. Soybeans,
corn, rice, and cotton categorized more easily than non-
cropland classes. Herbaceous cover types like alfalfa and
pasture/hay struggled to give even marginal results. Idle
cropland accuracies were even worse on average. Overall,
the non-agricultural classes performed relatively poorly
while row crop classes did the best.

Subset examples of the final output maps are shown
in Plate 1 to provide a geographical perspective of the
classification differences. In general, all three examples
showed similar patterns, especially at the agricultural
field level, and thus reinforced the tabular results from
Tables 4 and 5. Major differences within the dominant crop
cover types of corn, soybeans, and rice were difficult to find.
However, transitions between land-cover boundaries were
more sharply defined in the TM maps and non-agricultural
classes appeared more reasonable. For example, in Iowa’s
TM classification there was better definition of roads (classed
as non-agricultural) and no suggestion of pasture/hay incor-
rectly classified within the urban region. Additionally, the
overall percentage of “speckling” was about the same for all
classifications but more noticeable within AWIFS when
viewed at the same scale as TM.

As noted earlier, the main discrepancy in the sensors’
design comes from the lack of blue (band 1) and MIR (band
7) reflectance channels and the decreased pixels resolution
of 56 m on AWIFS. More insight could be gained on the
relative importance of each by altering the TM data to meet
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TABLE 5. CLASS SPECIFIC (a) PRODUCER’S, AND (b) USER’S ACCURACIES (%)

(a)

Arkansas Iowa Illinois

Class TM AWIFS TM AWIFS TM AWIFS

Alfalfa –– –– 12.1 16.2 8.0 6.3
Corn 43.7 42.7 80.2 82.8 88.4 85.1
Cotton 71.7 75.3 –– –– –– ––
Rice 82.6 84.1 –– –– –– ––
Soybeans 79.4 76.5 76.1 71.4 82.9 75.1
Idle Cropland 14.4 10.1 54.0 49.2 4.3 1.4
Other Cropland –– –– –– –– 30.5 36.4
Pasture/Hay 34.0 29.3 61.9 66.1 7.9 14.1
Non-agricultural –– –– 37.2 45.4 –– ––
Woodland 52.1 49.2 –– –– 41.9 39.1
Developed 6.0 3.4 –– –– 35.7 26.2
Water 17.3 20.4 –– –– –– ––

(b)

Arkansas Iowa Illinois

Class TM AWIFS TM AWIFS TM AWIFS

Alfalfa –– –– 37.0 41.3 17.4 7.7
Corn 62.4 54.2 73.3 71.9 79.7 74.3
Cotton 69.9 74.1 –– –– –– ––
Rice 83.1 84.5 –– –– –– ––
Soybeans 69.1 66.1 68.5 72.9 80.3 74.3
Idle Cropland 40.8 26.5 44.3 42.3 4.1 1.1
Other Cropland –– –– –– –– 41.2 38.1
Pasture/Hay 29.8 22.6 37.6 42.0 35.1 39.3
Non-agricultural –– –– 69.1 73.5 –– ––
Woodland 64.8 66.4 –– –– 63.9 67.6
Developed 9.5 5.9 –– –– 45.6 45.3
Water 17.9 23.2 –– –– –– ––

studying the decision rules derived during the CTA. In
other words, the bands with the least ability to discrimi-
nate between class types would be expected farther down
the decision tree structure than the bands that were
important. Within Iowa, and for both the raw TM and AWIFS
data sources, NIR (band 4) was where the first decision was
made and red (band 3) was the next most important. Blue
was not needed until a split at the fourth level, and the MIR
unused until even farther down the tree. This is consistent
with there being little impact from those bands, since there
was little change in the accuracy when they were taken
out. For the Arkansas case, the primary split was based on
the SWIR channel (band 5) in both TM and AWIFS. The NIR

band was the next most important decision in the tree.
Like with Iowa, the blue band was not called upon within
the TM analysis until the fourth level of split, and the MIR
layer was buried farther down. However, for Illinois, the
story was different. Within the normal TM classification the
blue band was utilized at the second level of the decision
tree and the MIR band at the fourth. The red and near-
infrared were found at the first and third split. For the
corresponding AWIFS analysis, the SWIR band was called
upon first and then the NIR. The overall implication was
that the blue band provided more information than the MIR,
and sometimes the blue band was as important as the red,
NIR, and SWIR bands.

TABLE 6. SIMULATION OF AWIFS DATA FROM TM

TM 4-band TM 56 m TM 4-band, 56 m TM AWIFS

Arkansas
Accuracy (%) 69.4 67.5 67.7 66.0 68.4
Kappa 0.590 0.564 0.569 0.546 0.576

Iowa
Accuracy (%) 59.1 58.9 58.2 56.6 61.6
Kappa 0.491 0.488 0.479 0.456 0.520

Illinois
Accuracy (%) 75.8 75.2 74.1 73.6 70.8
Kappa 0.612 0.599 0.586 0.575 0.530
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Plate 1. Classification output examples.

Discussion
The key classification objectives for NASS of good discrimina-
tion between cropland and non-cropland classes, and the
within-cropland discrimination of major commodities, were
met in most cases. The poorly performing non-cropland
classes, regardless of sensor, may have seemed a disappoint-
ment, but are actually of little concern. Those categories are

better served by more sophisticated classification efforts (e.g.,
NLCD or Gap Analysis) which may have been derived from
ancillary raster or vector data (e.g., roads, water, field bound-
aries, and topography) and multiple scenes of time appropriate
imagery (time series analysis over winter and summer). Even
from a NASS perspective, cropland discrimination is known to
improve with the availability of two or more scenes within the
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same growing season. This is how analysis within the CDL
program is performed when possible.

Accuracy differences in general varied more widely
across class categories than across sensor types. This 
was likely a reflection of insufficient training data or the
spectral inconsistency of certain cover types. For example,
the major row crop categories are usually planted, man-
aged, and harvested similarly, and thus have steady 
multi-spectral reflectances ideal for classification. On the
flip side, herbaceous cover types like alfalfa and hay 
often vary spectrally due to a range of cutting or grazing
practices and thus were more difficult to properly catego-
rize. Idle cropland-cover types often vary even more
widely in practice because fallow fields can have vastly
differing cover types, from bare soil to thick vegetation.
Too few or non-representative training data was probably
coming into play in the case of the mediocre result of the
water class for Arkansas, which can vary from shallow
aquaculture ponds to deep natural water bodies. For both
the TM and AWIFS analysis, all of the poorly performing
classes would likely be improved with the collection 
of more training data to better account for the true
variability of those landscapes.

Furthermore, the pixel-based classification methodology
used here was simplistic in nature and has room for
improvement. An easy way to increase overall and within
class accuracies is by taking spatial context into perspective
through post processing of the results using a minimum
mapping unit (MMU) filter to reduce spurious misclassified
pixels. For example, applying a cropland appropriate MMU
of 20 acres (8.1 hectares, or 90 TM pixels and 26 AWIFS
pixels) to all of the example scenarios improved overall
accuracies on average by a 5.2 percentage point difference
for the TM examples and 4.0 with AWIFS. Kappas were also
better for all cases averaging improvements of 0.064 for TM
and 0.046 for AWIFS. The overall suggestion is TM has
somewhat more to gain than AWIFS when increasing the
MMU beyond the native pixel size due to its finer spatial
resolution.

The overall accuracies in Iowa, with AWIFS outperforming
the TM analysis, were somewhat surprising and perplexing.
The explanation may be found in Iowa’s uniqueness in terms
of average surface incident angle of the scene pixels, com-
pared to those from the Arkansas and Illinois study areas.
Again, the Iowa TM data’s area of interest was towards the 
left edge of the scene, facing away from the sun, while the
corresponding AWIFS’s data was angled oppositely, toward 
the sun. The resulting average difference in viewing angle
was about 25 degrees. Given the better outcomes of AWIFS for
Iowa, it can be speculated that the optimal bi-directional
reflectance for discriminating cropland was looking into the
sun and that the off-nadir increase in GSD was more than
compensated for. The logic being impact from longer shadows
found in certain cover types are mixing into pixels and thus
increased contrast. This would be especially true for a crop
like corn which in mid-August was tall and leafy versus a
low lying category like pasture/hay. Analysis of full swath
width AWIFS imagery does subjectively suggest that pixels
towards the sun facing scene edges show more contrast
between differing cover types, especially in the NIR and SWIR
spectral bands. The wide range of view angles with AWIFS is
something that should to be taken into consideration more
heavily than when utilizing a relatively nadir looking system
like TM. Viewing angle impacts on classification efforts is a
research topic in its own right and needs to be further
explored.

For agriculture regions outside those studied here, the
negative impact of AWIFS larger pixels may become more
dramatic in areas having smaller field sizes, such as those

found in the eastern half of the U.S. It is speculated that 
the gap between AWIFS and TM performance would widen
because scale would become more of an issue. Obviously,
the larger and more uniform the field the less need there is
for a high-resolution pixel to capture its difference from
neighboring cover types. For data users that are focused 
on deriving non-agricultural classes, differences between 
TM and AWIFS may also become more apparent. Spatially
detailed and texturally complex classes such as urban will
likely suffer inferior classification results with AWIFS.

Only TM data in relation to AWIFS was compared
within this study. Landsat-7 ETM�, scan-gap problem aside,
is known to have better sensor performance than TM in
terms of signal-to-noise ratio and the inclusion of the 15 m
panchromatic band in addition to a 60 m thermal infrared.
TM lacks both of these, and thus cropland classifications
derived from a normally functioning ETM� sensor would
probably outperform TM, and thus AWIFS even more
(Craig, 2002).

The large scene sizes of AWIFS are appealing because 
a large amount of training data can be employed, but 
they can have the unintended consequence of stretching
training data information across the image to areas where
they are not appropriate. Keeping agriculture as an exam-
ple, training data from one scene corner of a particular
commodity may have a difference spectral signature from
that same commodity data several hundred kilometers
away. This would be especially pronounced during the
times of green-up or senescence where one portion of an
image leads or lags another due to seasonal onsets. Also,
crops may behave differently across scenes due to other
geographic factors such as changes in soil types, soil
moisture, elevation, climate, and crop management 
practices.

AWIFS offers compelling benefits over TM not addressed
directly in a side-by-side classification comparison. For one,
AWIFS has a much greater temporal repeat frequency. In a
region like the mid-section of the U.S., one can expect cloud
cover about fifty percent of the time during the summer.
Haze is even more common. Often the biggest obstacle to
being able to identify crops from space comes not from
limitations due to sensor design, data infrastructure, or
processing algorithms, but from the non-availability of
suitable time appropriate imagery. NASS often finds occa-
sions when not a single cloud-free TM scene is available
during the growing season over certain areas. This results in
an inability to produce a consistent wide area cropland
classification. AWIFS with its five-day revisit rate more than
triples the 16-day repeat of TM, and thus the likelihood of
obtaining useable data. Furthermore, the same five-day
repeat also increases the ability to capture multi-temporal
data over the same location. Although only analysis of
single scenes was shown here, improved classifications often
result when two or more scenes from different times of the
same growing season are used.

Second, because of the large AWIFS footprints, state-wide
or regional scale classifications are simpler and more effi-
cient to construct. For a typical U.S. state it takes several
Landsat scenes to build a mosaic large enough to cover the
entire area, and managing a large number of scenes with
differing capture dates and atmospheric conditions increases
the complexity and workload of a classification. With AWIFS,
the potential exists for many state level projects to only need
a couple of scenes to complete an entire analysis. Or thought
of another way, utilizing the same amount of resources onto
the larger scene footprints increases the scope of land in area
that is classifiable. AWIFS is a tool that brings NASS closer to
being able to rapidly identify planted locations of the major
commodities beyond just a state level.
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Another advantage to AWIFS is in regards to data
intercomparability that can be had with the other LISS-III
multi-spectral sensor on the Resourcesat-1 platform. It is
collected simultaneously and has the identical sensor
characteristics to AWIFS, other than a finer pixel size and
narrower field of view. LISS-III allows for a direct method to
obtain some of the AWIFS scene information spectrally
calibrated at an increased resolution of 23.5 m. The JAS
provides NASS with a rich training set of ground truth
information, but other classification efforts might need 
to rely on inspection of higher resolution data that is
collected in parallel.

Further utility of AWIFS data that TM cannot provide
may arise in the form of time series analysis. Sensors 
such as AVHRR, MODIS, and SPOT Vegetation have typically
been used for this work because they have a daily repeat
frequency. However, their pixels have relatively low
resolutions (250 m to 1 km) which are too large to provide
detail at the crop field level for which Landsat is better
suited. AWIFS represents a compromise between the low
and medium resolution sensors in terms of temporal
coverage and pixel size so has the potential for spatially
detailed phenology analysis that is currently not possible.

Conclusions
A comparison of coincident Landsat-5 TM and Resourcesat-1
AWIFS imagery for deriving independent land-cover
classifications emphasizing row crop agriculture has been
presented for three study sites. TM data was found to be 
on average slightly superior to AWIFS in terms of overall, 
and within category, map accuracies. Differences were
typically within five percentage points of one another and
not considered major. TM performed better likely because 
of its spatial resolution being three and one half times finer
than that of AWIFS and, to a lesser extent, the added spectral
information provided through its blue and MIR bands.
However, implying the only differences in the data sources
were due to pixel sizes and spectral bands is likely over
simplifying the comparison. This is true because it was
shown degrading the TM data to match the AWIFS created
larger, not smaller, dissimilarities between the outputs for
two of the three cases.

It is speculated that the classification performance gap
would widen if the study sites contained cultivated areas with
fields smaller than those typically found within the central
U.S. This is a logical next topic for research and would help
document the usability of 56 m pixels in more spatially
complex land-cover areas. Additionally, impacts to classifica-
tion outcomes by AWIFS due to the wide field of view need to
be explored in further detail. However, no evidence was found
showing AWIFS edge pixels to be more compromised than
those at nadir, and there is even suggestion that off-nadir
viewing angles might have benefits.

For cropland classification purposes, it is believed the
any loss in map accuracy from switching to AWIFS from 
TM will be compensated for by the threefold or better
revisit rate. As such, Resourcesat offers real opportunity for
temporal analysis of agriculture that Landsat cannot match.
Answers to further crop questions, such as condition or
yield, may become more obtainable from remotely sensed
imagery than ever before.

Finally, while crop detection over the central U.S. was
the focus here, there are obviously other applications and
regions around the globe reliant on remotely sensed imagery
of the earth’s land surface. It is believed the large footprints
and better than weekly overpass coverage of AWIFS can
significantly increase the capacity of land-cover monitoring
and evaluation for a variety of disciplines, particularly at

regional scales. Users that will likely benefit most are those
that have a difficult time obtaining imagery because of high
likelihood of cloud cover in their area of interest such as in
tropical, mountainous, or high latitude regimes. Additionally,
because the large scene sizes simplify analysis, AWIFS data
should be appealing to those in the land-cover monitoring
community trying to map large regional or even continental-
sized extents.
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